If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-19x+9=0
a = 3; b = -19; c = +9;
Δ = b2-4ac
Δ = -192-4·3·9
Δ = 253
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{253}}{2*3}=\frac{19-\sqrt{253}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{253}}{2*3}=\frac{19+\sqrt{253}}{6} $
| –5d=–10 | | 7+2x+6x=-73 | | 90+(15x+30)+10x=180 | | 3p+8=39 | | 9+5x+x=51 | | 5b+4b+6=b | | 90(15x+30)10x=180 | | 3x2-19x+6=0 | | 3x+5=-8x10 | | -11−9p=-146 | | 3.5/8.26=5/x | | 1/2+7/2=-3/8(5x-4) | | -5x-7+3x=17 | | 3/4+j=4/5 | | 74+s=6+3s | | 5x10+7x1+2x(1/10)+3x10+7x(1/1000)=52.237 | | -3x5x+8=+30 | | 9y-11-14y=14 | | -10-2x-6x=38 | | -18=-6e | | (x+2)*(2x-4)=(2x-1)*x | | 7+x+5x=79 | | 90+10x+15x+30=180 | | x2-10=39 | | 9+x+2x=9 | | -k+22-3k-7=55 | | b/0.3=1.4 | | -3x+6+5x=28 | | –3n+9=6n | | -5w-29=55-2w | | 180=7x+22+50 | | x+8;x=12 |